Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(36): e2207963119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037363

RESUMEN

The filamentous, multicellular cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a prokaryotic model for the study of cell differentiation and cell-cell interactions. Upon combined-nitrogen deprivation, Anabaena forms a particular cell type, heterocyst, for aerobic nitrogen fixation. Heterocysts are semiregularly spaced among vegetative cells. Heterocyst differentiation is coupled to cell division, but the underlying mechanism remains unclear. This mechanism could be mediated by the putative protease HetF, which is a divisome component and is necessary for heterocyst differentiation. In this study, by suppressor screening, we identified PatU3, as a negative regulator acting downstream of HetF for cell division and heterocyst development. The inactivation of patU3 restored the capacity of cell division and heterocyst differentiation in the ΔhetF mutant, and overexpression of patU3 inhibited both processes in the wild-type background. We demonstrated that PatU3 was a specific substrate of the protease activity of HetF. Consequently, PatU3 accumulated in the hetF-deficient mutant, which was responsible for the resultant mutant phenotype. The cleavage site of PatU3 by HetF was mapped after the Arg117 residue, whose mutation made PatU3 resistant to HetF processing, and mimicked the effect of hetF deletion. Our results provided evidence that HetF regulated cell division and heterocyst differentiation by controlling the inhibitory effects of PatU3. This proteolytic pathway constituted a mechanism for the coordination between cell division and differentiation in a prokaryotic model used for studies on developmental biology and multicellularity.


Asunto(s)
Anabaena , Proteínas Bacterianas , División Celular , Proteolisis , Anabaena/citología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Elife ; 102021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33749592

RESUMEN

Circadian clocks display remarkable reliability despite significant stochasticity in biomolecular reactions. We study the dynamics of a circadian clock-controlled gene at the individual cell level in Anabaena sp. PCC 7120, a multicellular filamentous cyanobacterium. We found significant synchronization and spatial coherence along filaments, clock coupling due to cell-cell communication, and gating of the cell cycle. Furthermore, we observed low-amplitude circadian oscillatory transcription of kai genes encoding the post-transcriptional core oscillatory circuit and high-amplitude oscillations of rpaA coding for the master regulator transducing the core clock output. Transcriptional oscillations of rpaA suggest an additional level of regulation. A stochastic one-dimensional toy model of coupled clock cores and their phosphorylation states shows that demographic noise can seed stochastic oscillations outside the region where deterministic limit cycles with circadian periods occur. The model reproduces the observed spatio-temporal coherence along filaments and provides a robust description of coupled circadian clocks in a multicellular organism.


Asunto(s)
Anabaena/genética , Comunicación Celular , Relojes Circadianos/genética , Anabaena/citología , Anabaena/metabolismo , Ciclo Celular
3.
PLoS One ; 16(3): e0248155, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33662009

RESUMEN

Nitrogen assimilation is strictly regulated in cyanobacteria. In an inorganic nitrogen-deficient environment, some vegetative cells of the cyanobacterium Anabaena differentiate into heterocysts. We assessed the photosynthesis and nitrogen-fixing capacities of heterocysts and vegetative cells, respectively, at the transcriptome level. RNA extracted from nitrogen-replete vegetative cells (NVs), nitrogen-deprived vegetative cells (NDVs), and nitrogen-deprived heterocysts (NDHs) in Anabaena sp. strain PCC 7120 was evaluated by transcriptome sequencing. Paired comparisons of NVs vs. NDHs, NVs vs. NDVs, and NDVs vs. NDHs revealed 2,044 differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the DEGs showed that carbon fixation in photosynthetic organisms and several nitrogen metabolism-related pathways were significantly enriched. Synthesis of Gvp (Gas vesicle synthesis protein gene) in NVs was blocked by nitrogen deprivation, which may cause Anabaena cells to sink and promote nitrogen fixation under anaerobic conditions; in contrast, heterocysts may perform photosynthesis under nitrogen deprivation conditions, whereas the nitrogen fixation capability of vegetative cells was promoted by nitrogen deprivation. Immunofluorescence analysis of nitrogenase iron protein suggested that the nitrogen fixation capability of vegetative cells was promoted by nitrogen deprivation. Our findings provide insight into the molecular mechanisms underlying nitrogen fixation and photosynthesis in vegetative cells and heterocysts at the transcriptome level. This study provides a foundation for further functional verification of heterocyst growth, differentiation, and water bloom control.


Asunto(s)
Anabaena/citología , Anabaena/genética , Regulación Bacteriana de la Expresión Génica , Fijación del Nitrógeno , Anabaena/metabolismo , Anabaena/ultraestructura , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Nitrógeno/metabolismo , Transcriptoma
4.
mSphere ; 6(1)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441411

RESUMEN

In filamentous heterocyst-forming (N2-fixing) cyanobacteria, septal junctions join adjacent cells, mediating intercellular communication, and are thought to traverse the septal peptidoglycan through nanopores. Fluorescence recovery after photobleaching (FRAP) analysis with the fluorescent marker calcein showed that cultures of Anabaena sp. strain PCC 7120 grown in the presence of combined nitrogen contained a substantial fraction of noncommunicating cells (58% and 80% of the tested vegetative cells in nitrate- and ammonium-grown cultures, respectively), whereas cultures induced for nitrogen fixation contained far fewer noncommunicating cells (16%). A single filament could have communicating and noncommunicating cells. These observations indicate that all (or most of) the septal junctions in a cell can be coordinately regulated and are coherent with the need for intercellular communication, especially under diazotrophic conditions. Consistently, intercellular exchange was observed to increase in response to N deprivation and to decrease rapidly in response to the presence of ammonium in the medium or to nitrate assimilation. Proteins involved in the formation of septal junctions have been identified in Anabaena and include SepJ, FraC, and FraD. Here, we reevaluated rates of intercellular transfer of calcein and the number of nanopores in mutants lacking these proteins and found a strong positive correlation between the two parameters only in cultures induced for nitrogen fixation. Thus, whereas the presence of a substantial number of noncommunicating cells appears to impair the correlation, data obtained in diazotrophic cultures support the idea that the nanopores are the structures that hold the septal junctions.IMPORTANCE Multicellularity is found in bacteria as well as in eukaryotes, and the filamentous heterocyst-forming (N2-fixing) cyanobacteria represent a simple and ancient paradigm of multicellular organisms. Multicellularity generally involves cell-cell adhesion and communication. The cells in the cyanobacterial filaments are joined by proteinaceous septal junctions that mediate molecular diffusion. The septal junctions traverse the septal peptidoglycan, which bears holes termed nanopores. Our results show that the septal junctions can be coordinately regulated in a cell and emphasize the relationship between septal junctions and nanopores to build intercellular communication structures, which are essential for the multicellular behavior of heterocyst-forming cyanobacteria.


Asunto(s)
Anabaena/citología , Anabaena/metabolismo , Citoesqueleto/metabolismo , Fijación del Nitrógeno , Anabaena/genética , Proteínas Bacterianas/genética , Citoesqueleto/ultraestructura , Fluoresceínas/metabolismo , Regulación Bacteriana de la Expresión Génica , Microscopía Electrónica de Transmisión , Nanoporos
5.
mSphere ; 5(5)2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115834

RESUMEN

The model cyanobacterium Anabaena sp. PCC 7120 exhibits a phototrophic metabolism relying on oxygenic photosynthesis and a complex morphology. The organismic unit is a filament of communicated cells that may include cells specialized in different nutritional tasks, thus representing a paradigm of multicellular bacteria. In Anabaena, the inorganic carbon and nitrogen regime influenced not only growth, but also cell size, cell shape, and filament length, which also varied through the growth cycle. When using combined nitrogen, especially with abundant carbon, cells enlarged and elongated during active growth. When fixing N2, which imposed lower growth rates, shorter and smaller cells were maintained. In Anabaena, gene homologs to mreB, mreC, and mreD form an operon that was expressed at higher levels during the phase of fastest growth. In an ntcA mutant, mre transcript levels were higher than in the wild type and, consistently, cells were longer. Negative regulation by NtcA can explain that Anabaena cells were longer in the presence of combined nitrogen than in diazotrophic cultures, in which the levels of NtcA are higher. mreB, mreC, and mreD mutants could grow with combined nitrogen, but only the latter mutant could grow diazotrophically. Cells were always larger and shorter than wild-type cells, and their orientation in the filament was inverted. Consistent with increased peptidoglycan width and incorporation in the intercellular septa, filaments were longer in the mutants, suggesting a role for MreB, MreC, and MreD in the construction of septal peptidoglycan that could affect intercellular communication required for diazotrophic growth.IMPORTANCE Most studies on the determination of bacterial cell morphology have been conducted in heterotrophic organisms. Here, we present a study of how the availability of inorganic nitrogen and carbon sources influence cell size and morphology in the context of a phototrophic metabolism, as found in the multicellular cyanobacterium Anabaena In Anabaena, the expression of the MreB, MreC, and MreD proteins, which influence cell size and length, are regulated by NtcA, a transcription factor that globally coordinates cellular responses to the C-to-N balance of the cells. Moreover, MreB, MreC, and MreD also influence septal peptidoglycan construction, thus affecting filament length and, possibly, intercellular molecular exchange that is required for diazotrophic growth. Thus, here we identified new roles for Mre proteins in relation to the phototrophic and multicellular character of a cyanobacterium, Anabaena.


Asunto(s)
Anabaena/genética , Anabaena/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Nutrientes , Anabaena/citología , Carbono/metabolismo , Citoesqueleto , Nitrógeno/metabolismo , Factores de Transcripción
6.
Sci Rep ; 10(1): 1894, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024928

RESUMEN

Filament-forming proteins in bacteria function in stabilization and localization of proteinaceous complexes and replicons; hence they are instrumental for myriad cellular processes such as cell division and growth. Here we present two novel filament-forming proteins in cyanobacteria. Surveying cyanobacterial genomes for coiled-coil-rich proteins (CCRPs) that are predicted as putative filament-forming proteins, we observed a higher proportion of CCRPs in filamentous cyanobacteria in comparison to unicellular cyanobacteria. Using our predictions, we identified nine protein families with putative intermediate filament (IF) properties. Polymerization assays revealed four proteins that formed polymers in vitro and three proteins that formed polymers in vivo. Fm7001 from Fischerella muscicola PCC 7414 polymerized in vitro and formed filaments in vivo in several organisms. Additionally, we identified a tetratricopeptide repeat protein - All4981 - in Anabaena sp. PCC 7120 that polymerized into filaments in vitro and in vivo. All4981 interacts with known cytoskeletal proteins and is indispensable for Anabaena viability. Although it did not form filaments in vitro, Syc2039 from Synechococcus elongatus PCC 7942 assembled into filaments in vivo and a Δsyc2039 mutant was characterized by an impaired cytokinesis. Our results expand the repertoire of known prokaryotic filament-forming CCRPs and demonstrate that cyanobacterial CCRPs are involved in cell morphology, motility, cytokinesis and colony integrity.


Asunto(s)
Anabaena/citología , Proteínas Bacterianas/metabolismo , Cianobacterias/citología , Proteínas del Citoesqueleto/metabolismo , Synechococcus/citología , Secuencias de Aminoácidos/genética , Anabaena/genética , Anabaena/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Cianobacterias/genética , Cianobacterias/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/aislamiento & purificación , Citoesqueleto/metabolismo , Genes Bacterianos/genética , Mutación , Conformación Proteica en Hélice alfa/genética , Multimerización de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
7.
Int J Med Microbiol ; 309(8): 151303, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31521503

RESUMEN

Some filamentous cyanobacteria are phototrophic bacteria with a true multicellular life style. They show patterned cell differentiation with the distribution of metabolic tasks between different cell types. This life style requires a system of cell-cell communication and metabolite exchange along the filament. During our study of the cell wall of species Nostoc punctiforme and Anabaena sp. PCC 7120 we discovered regular perforations in the septum between neighboring cells, which we called nanopore array. AmiC-like amidases are drilling the nanopores with a diameter of 20 nm, and are essential for communication and cell differentiation. NlpD-like regulators of AmiC activity and septum localized proteins SepJ, FraC and FraD are also involved in correct nanopore formation. By focused ion beam (FIB) milling and electron cryotomography we could visualize the septal junctions, which connect adjacent cells and pass thru the nanopores. They consist of cytoplasmic caps, which are missing in the fraD mutant, a plug inside the cytoplasmic membrane and a tube like conduit. A destroyed membrane potential and other stress factors lead to a conformational change in the cap structure and loss of cell-cell communication. These gated septal junctions of cyanobacteria are ancient structures that represent an example of convergent evolution, predating metazoan gap junctions.


Asunto(s)
Anabaena/citología , Comunicación Celular , Nanoporos , Nostoc/citología , Peptidoglicano/metabolismo , Amidohidrolasas/metabolismo , Anabaena/enzimología , Regulación Bacteriana de la Expresión Génica , Nostoc/enzimología , Uniones Estrechas/metabolismo
8.
Proteomics ; 19(19): e1800332, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31430420

RESUMEN

Cyanobacteria are oxygenic photosynthetic prokaryotes and play a crucial role in the Earth's carbon and nitrogen cycles. The photoautotrophic cyanobacterium Anabaena sp. PCC 7120 has the ability to fix atmospheric nitrogen in heterocysts and produce hydrogen as a byproduct through a nitrogenase. In order to improve hydrogen production, mutants from Anabaena sp. PCC 7120 are constructed by inactivation of the uptake hydrogenase (ΔhupL) and the bidirectional hydrogenase (ΔhoxH) in previous studies. Here the proteomic differences of enriched heterocysts between these mutants cultured in N2 -fixing conditions are investigated. Using a label-free quantitative proteomics approach, a total of 2728 proteins are identified and it is found that 79 proteins are differentially expressed in the ΔhupL and 117 proteins in the ΔhoxH variant. The results provide for the first time comprehensive information on proteome regulation of the uptake hydrogenase and the bidirectional hydrogenase, as well as systematic data on the hydrogen related metabolism in Anabaena sp. PCC 7120.


Asunto(s)
Anabaena/metabolismo , Proteínas Bacterianas/metabolismo , Hidrogenasas/metabolismo , Proteoma/análisis , Proteómica/métodos , Anabaena/citología , Anabaena/genética , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Clorofila/metabolismo , Análisis por Conglomerados , Hidrogenasas/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Mutación , Fijación del Nitrógeno
9.
Opt Express ; 27(12): 16475-16482, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31252872

RESUMEN

Optical cell manipulation has become increasingly valuable in cell-based assays. In this paper, we demonstrate the translational and rotational manipulation of filamentous cells using multiple cooperative microrobots automatically driven by holographic optical tweezers. The photodamage of the cells due to direct irradiation of the laser beam can be effectively avoided. The proposed method will enable fruitful biomedical applications where precise cell manipulation and less photodamage are required.


Asunto(s)
Anabaena/citología , Micromanipulación/instrumentación , Pinzas Ópticas , Robótica/instrumentación , Rotación , Holografía , Imagenología Tridimensional
10.
Sci Rep ; 8(1): 9055, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899430

RESUMEN

A novel imaging-driven technique with an integrated fluorescence signature to enable automated enumeration of two species of cyanobacteria and an alga of somewhat similar morphology to one of the cyanobacteria is presented to demonstrate proof-of-concept that high accuracy, imaging-based, rapid water quality analysis can be with conventional equipment available in typical water quality laboratories-this is not currently available. The results presented herein demonstrate that the developed method identifies and enumerates cyanobacterial cells at a level equivalent to or better than that achieved using standard manual microscopic enumeration techniques, but in less time, and requiring significantly fewer resources. When compared with indirect measurement methods, the proposed method provides better accuracy at both low and high cell concentrations. It extends the detection range for cell enumeration while maintaining accuracy and increasing enumeration speed. The developed method not only accurately estimates cell concentrations, but it also reliably distinguishes between cells of Anabaena flos-aquae, Microcystis aeruginosa, and Ankistrodesmus in mixed cultures by taking advantage of additional contrast between the target cell and complex background gained under fluorescent light. Thus, the proposed image-driven approach offers promise as a robust and cost-effective tool for identifying and enumerating microscopic cells based on their unique morphological features.


Asunto(s)
Anabaena/citología , Chlorophyceae/citología , Fluorescencia , Microcystis/citología , Anabaena/química , Anabaena/crecimiento & desarrollo , Chlorophyceae/química , Chlorophyceae/crecimiento & desarrollo , Análisis Costo-Beneficio , Técnicas Microbiológicas/economía , Técnicas Microbiológicas/métodos , Microcystis/química , Microcystis/crecimiento & desarrollo , Reproducibilidad de los Resultados
11.
Plant Physiol ; 177(1): 52-61, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29581180

RESUMEN

Soft x-ray microscopy (SXM) is a minimally invasive technique for single-cell high-resolution imaging as well as the visualization of intracellular distributions of light elements such as carbon, nitrogen, and oxygen. We used SXM to observe photosynthesis and nitrogen fixation in the filamentous cyanobacterium Anabaena sp. PCC 7120, which can form heterocysts during nitrogen starvation. Statistical and spectroscopic analyses from SXM images around the K-absorption edge of nitrogen revealed a significant difference in the carbon-to-nitrogen (C/N) ratio between vegetative cells and heterocysts. Application of this analysis to soft x-ray images of Anabaena sp. PCC 7120 revealed inhomogenous C/N ratios in the cells. Furthermore, soft x-ray tomography of Anabaena sp. PCC 7120 revealed differing cellular C/N ratios, indicating different carbon and nitrogen distributions between vegetative cells and heterocysts in three dimensions.


Asunto(s)
Anabaena/fisiología , Carbono/análisis , Nitrógeno/análisis , Tomografía por Rayos X/métodos , Anabaena/citología , Carbono/metabolismo , Imagenología Tridimensional , Nitrógeno/metabolismo , Fijación del Nitrógeno , Fotosíntesis , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/estadística & datos numéricos
12.
Plant Cell Physiol ; 59(1): 82-89, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29088489

RESUMEN

In the last decade, much progress has been made in the photosynthetic production of valuable products using unicellular cyanobacteria. However, production of some products requires dark, anaerobic incubation, which prevents practical applications using these organisms. Anabaena sp. PCC 7120 (A. 7120) is a heterocyst-forming multicellular cyanobacterium that is easy to manipulate genetically. Upon nitrogen step-down, this strain differentiates heterocysts that retain micro-oxic conditions for nitrogen fixation. We have developed gene regulation tools in this cyanobacterium. However, lack of a cell type-specific gene induction system has prevented A. 7120 from becoming a bona fide attractive host for photosynthetic production. We validated the usability of two transcriptional ON riboswitches that respond to theophylline or adenine. We then created a cell type-specific gene induction system by combining the riboswitches and promoters specific to either heterocysts or vegetative cells. We also created another cell type-specific gene induction system using small RNA that activates translation. Consequently, our study has expanded the toolbox for gene regulation in cyanobacteria and has enabled spatio-temporal gene induction in multicellular cyanobacteria.


Asunto(s)
Anabaena/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Fijación del Nitrógeno/genética , Adenina/farmacología , Anabaena/citología , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Modelos Genéticos , Nitrógeno/metabolismo , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Riboswitch/genética , Teofilina/farmacología
13.
Plant Physiol ; 173(1): 509-523, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27899536

RESUMEN

Anabaena sp. PCC 7120 is a nitrogen-fixing filamentous cyanobacterium. Under nitrogen-limiting conditions, a fraction of the vegetative cells in each filament terminally differentiate to nongrowing heterocysts. Heterocysts are metabolically and structurally specialized to enable O2-sensitive nitrogen fixation. The functionality of the filament, as an association of vegetative cells and heterocysts, is postulated to depend on metabolic exchange of electrons, carbon, and fixed nitrogen. In this study, we compile and evaluate a comprehensive curated stoichiometric model of this two-cell system, with the objective function based on the growth of the filament under diazotrophic conditions. The predicted growth rate under nitrogen-replete and -deplete conditions, as well as the effect of external carbon and nitrogen sources, was thereafter verified. Furthermore, the model was utilized to comprehensively evaluate the optimality of putative metabolic exchange reactions between heterocysts and vegetative cells. The model suggested that optimal growth requires at least four exchange metabolites. Several combinations of exchange metabolites resulted in predicted growth rates that are higher than growth rates achieved by only considering exchange of metabolites previously suggested in the literature. The curated model of the metabolic network of Anabaena sp. PCC 7120 enhances our ability to understand the metabolic organization of multicellular cyanobacteria and provides a platform for further study and engineering of their metabolism.


Asunto(s)
Anabaena/citología , Anabaena/genética , Modelos Biológicos , Anabaena/metabolismo , Biomasa , Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Fijación del Nitrógeno
14.
PLoS One ; 11(3): e0151384, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26967347

RESUMEN

In the nitrogen-fixing heterocyst-forming cyanobacterium Anabaena sp. PCC 7120, the ferric uptake regulator FurA plays a global regulatory role. Failures to eliminate wild-type copies of furA gene from the polyploid genome suggest essential functions. In the present study, we developed a selectively regulated furA expression system by the replacement of furA promoter in the Anabaena sp. chromosomes with the Co2+/Zn2+ inducible coaT promoter from Synechocystis sp. PCC 6803. By removing Co2+ and Zn2+ from the medium and shutting off furA expression, we showed that FurA was absolutely required for cyanobacterial growth. RNA-seq based comparative transcriptome analyses of the furA-turning off strain and its parental wild-type in conjunction with subsequent electrophoretic mobility shift assays and semi-quantitative RT-PCR were carried out in order to identify direct transcriptional targets and unravel new biological roles of FurA. The results of such approaches led us to identify 15 novel direct iron-dependent transcriptional targets belonging to different functional categories including detoxification and defences against oxidative stress, phycobilisome degradation, chlorophyll catabolism and programmed cell death, light sensing and response, heterocyst differentiation, exopolysaccharide biosynthesis, among others. Our analyses evidence novel interactions in the complex regulatory network orchestrated by FurA in cyanobacteria.


Asunto(s)
Anabaena/metabolismo , Proteínas Bacterianas/metabolismo , Anabaena/citología , Anabaena/efectos de los fármacos , Anabaena/genética , Proteínas Bacterianas/genética , Proliferación Celular/efectos de los fármacos , Cobalto/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Fenotipo , Transcriptoma/efectos de los fármacos , Zinc/farmacología
15.
J Photochem Photobiol B ; 152(Pt B): 395-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26498711

RESUMEN

Primary photosynthetic reactions take place inside thylakoid membrane where light-to-chemical energy conversion is catalyzed by two pigment-protein complexes, photosystem I (PSI) and photosystem II (PSII). Light absorption in cyanobacteria is increased by pigment-protein supercomplexes--phycobilisomes (PBSs) situated on thylakoid membrane surfaces that transfer excitation energy into both photosystems. We have explored the localization of PSI, PSII and PBSs in thylakoid membrane of native cyanobacteria cell Anabaena sp. 7120 by means of cryogenic confocal microscopy. We have adapted a conventional temperature controlling stage to an Olympus FV1000 confocal microscope. The presence of red shifted emission of chlorophylls from PSI has been confirmed by spectral measurements. Confocal fluorescence images of PSI (in a spectral range 710-750 nm), PSII (in a spectral range 690-705 nm) and PBSs (in a spectral range 650-680 nm) were recorded at low temperature. Co-localization of images showed spatial heterogeneity of PSI, PSII and PBSs over the thylakoid membrane, and three dominant areas were identified: PSI-PSII-PBS supercomplex area, PSII-PBS supercomplex area and PSI area. The observed results were discussed with regard to light-harvesting regulation in cyanobacteria.


Asunto(s)
Anabaena/citología , Anabaena/enzimología , Microscopía Confocal , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Ficobilisomas/metabolismo , Anabaena/metabolismo , Modelos Moleculares , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema II/química , Ficobilisomas/química , Conformación Proteica , Transporte de Proteínas
16.
Opt Lett ; 40(10): 2233-6, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26393707

RESUMEN

Lensfree on-chip microscopy is an emerging imaging technique that can be used to visualize and study biological specimens without the need for imaging lens systems. Important issues that can limit the performance of lensfree on-chip microscopy include interferometric aberrations, acquisition noise, and image reconstruction artifacts. In this study, we introduce a Bayesian-based method for performing aberration correction and numerical diffraction that accounts for all three of these issues to improve the effective numerical aperture (NA) and signal-to-noise ratio (SNR) of the reconstructed microscopic image. The proposed method was experimentally validated using the USAF resolution target as well as real waterborne Anabaena flos-aquae samples, demonstrating improvements in NA by ∼25% over the standard method, and improvements in SNR of 2.8 and 8.2 dB in the reconstructed image when compared to the reconstructed images produced using the standard method and a maximum likelihood estimation method, respectively.


Asunto(s)
Microscopía/instrumentación , Fenómenos Ópticos , Anabaena/citología , Artefactos , Teorema de Bayes , Procesamiento de Imagen Asistido por Computador , Relación Señal-Ruido
17.
Proc Natl Acad Sci U S A ; 112(32): E4458-64, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26216997

RESUMEN

The filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 differentiates specialized cells, heterocysts, that fix atmospheric nitrogen and transfer the fixed nitrogen to adjacent vegetative cells. Reciprocally, vegetative cells transfer fixed carbon to heterocysts. Several routes have been described for metabolite exchange within the filament, one of which involves communicating channels that penetrate the septum between adjacent cells. Several fra gene mutants were isolated 25 y ago on the basis of their phenotypes: inability to fix nitrogen and fragmentation of filaments upon transfer from N+ to N- media. Cryopreservation combined with electron tomography were used to investigate the role of three fra gene products in channel formation. FraC and FraG are clearly involved in channel formation, whereas FraD has a minor part. Additionally, FraG was located close to the cytoplasmic membrane and in the heterocyst neck, using immunogold labeling with antibody raised to the N-terminal domain of the FraG protein.


Asunto(s)
Anabaena/citología , Anabaena/metabolismo , Proteínas Bacterianas/metabolismo , Fijación del Nitrógeno , Anabaena/ultraestructura , Mutación/genética , Fracciones Subcelulares/metabolismo , Tomografía
18.
Appl Biochem Biotechnol ; 176(7): 1950-63, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26041059

RESUMEN

Bioflocculant exopolysaccharide (EPS) production by 40 cyanobacterial strains during their photoautotrophic growth was investigated. Highest levels of EPS were produced by Nostoc sp. BTA97 and Anabaena sp. BTA990. EPS production was maximum during stationary growth phase, when nitrogenase activity was very low. Maximum EPS production occurred at pH 8.0 in the absence of any combined nitrogen source. The cyanobacterial EPS consisted of soluble protein and polysaccharide that included substantial amounts of neutral sugars and uronic acid. The EPS isolated from Anabaena sp. BTA990 and Nostoc sp. BTA97 demonstrated high flocculation capacity. There was a positive correlation between uronic acid content and flocculation activity. The flocculant bound a cationic dye, Alcian Blue, indicating it to be polyanionic. The 16S rRNA gene sequences for Nostoc sp. BTA97 and Anabaena sp. BTA990 were deposited at NCBI GenBank, and accession numbers were obtained as KJ830951 and KJ830948, respectively. The results of these experiments indicate that strains Anabaena sp. BTA990 and Nostoc sp. BTA97 are good candidates for the commercial production of EPS and might be utilized in industrial applications as an alternative to synthetic and abiotic flocculants.


Asunto(s)
Anabaena/crecimiento & desarrollo , Anabaena/metabolismo , Nostoc/crecimiento & desarrollo , Nostoc/metabolismo , Polisacáridos/biosíntesis , Anabaena/química , Anabaena/citología , Técnicas de Cultivo , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Floculación , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , Nitratos/farmacología , Nostoc/química , Nostoc/citología , Filogenia , ARN Ribosómico 16S/genética , Ácidos Urónicos/metabolismo
19.
J Bacteriol ; 197(2): 362-70, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25384479

RESUMEN

Levels of 2-oxoglutarate (2-OG) reflect nitrogen status in many bacteria. In heterocystous cyanobacteria, a spike in the 2-OG level occurs shortly after the removal of combined nitrogen from cultures and is an integral part of the induction of heterocyst differentiation. In this work, deletion of one of the two annotated trpE genes in Anabaena sp. strain PCC 7120 resulted in a spike in the 2-OG level and subsequent differentiation of a wild-type pattern of heterocysts when filaments of the mutant were transferred from growth on ammonia to growth on nitrate. In contrast, 2-OG levels were unaffected in the wild type, which did not differentiate under the same conditions. An inverted-repeat sequence located upstream of trpE bound a central regulator of differentiation, HetR, in vitro and was necessary for HetR-dependent transcription of a reporter fusion and complementation of the mutant phenotype in vivo. Functional complementation of the mutant phenotype with the addition of tryptophan suggested that levels of tryptophan, rather than the demonstrated anthranilate synthase activity of TrpE, mediated the developmental response of the wild type to nitrate. A model is presented for the observed increase in 2-OG in the trpE mutant.


Asunto(s)
Anabaena/metabolismo , Proteínas Bacterianas/metabolismo , Anabaena/citología , Anabaena/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica
20.
Microbiology (Reading) ; 161(Pt 1): 84-88, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378560

RESUMEN

Cyanobacteria use a sophisticated system of pigments to collect light energy across the visible spectrum for photosynthesis. The pigments are assembled in structures called phycobilisomes, composed of phycoerythrocyanin, phycocyanin and allophycocyanin, which absorb energy and transfer it to chlorophyll in photosystem II reaction centres. All of the components of this system are fluorescent, allowing sensitive measurements of energy transfer using single cell confocal fluorescence microscopy. The native pigments can be interrogated without the use of reporters. Here, we use confocal fluorescence microscopy to monitor changes in the efficiency of energy transfer as single cells age, between the time they are born at cell division until they are ready to divide again. Alteration of fluorescence was demonstrated to change with the age of the cyanobacterial cell.


Asunto(s)
Anabaena/citología , Anabaena/fisiología , Microscopía Confocal , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...